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Numerical results obtained for the materials studied are shown in Tables I-3 (crystalli- 
zation time is in seconds; the difference between the initial and final temperatures on the 
external boundary is in ~ the pressure in the liquid phase is in dyn/cm 2. These three quan- 
tities are shown in the respective tables). 

Figures 2 and 3 show the dependence of crystallization rate on time, while Figs. 4 and 5 
show the radial temperature distribution. Lines I and 2 in Figs. 2-5 correspond to the clas- 
sical problem and the problem with allowance for stresses. 

In conclusion, we thank V. V. Pukhnachev, B. D. Annin, and A. N. Cherepanov for their 
active support and valuable advice. 
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NUMERICAL STUDY OF THE ACTION OF GAS-EXPLOSIVE TUBE ON THE SURFACE 

OF A STEEL WALL 

A. I. Byvshikh, V. I. Kirko, 
and N. I. Pak 

UDC 535.211:536.4 

An experimental study was made in [I] of the feasibility of the heat treatment of the 
inside surface of a steel channel with a gas-explosive discharge. The surface layer of the 
specimen subjected to such action usually consists of a zone of solidified melt of about 20 
~m and a heat-affected zone of about 30 ~m, where ~--y-~' structural transformations have 
taken place. The explosive action of the discharge is accompanied by the removal of a sub- 
stantial amount of material from the surface of the channel. The depth of the layer removed 
may reach 100 ~m. Such values as these for the depths of the fusion and heat-affected zones 
and the removed layer are difficult to explain by the thermal effect on the wall of the bunch 
of shock-compressed gas formed in front of the gas-explosive jet of explosion products (JEP). 
The convective action of the JEP which follows the shock-compressed gas should be taken as 
the basis of the removal mechanism, as well as of the appearance of the fusion and heat- 
affected zones. In fact, the heat flow to the wall of the channel from the plasma bunch and 

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 122- 
]25, September-October, 1985. Original article submitted July 9, 1984. 

0021-8944/85/2605-0713509.50 �9 1986 Plenum Publishing Corporation 713 



the JEP can be calculated from the formula [2] q = St pu(h + u2/2), which agrees satisfac- 
torily with empirical data [3]. The parameters of the plasma and the explosive jet can be 
evaluated by examining an approximate model of gasdynamic flow in gas-explosive charges [4]. 
In accordance with the Hugoniot curve of air at a mass velocity u = 10.5 km/sec, the pressure 
p = 1600. I0 s N/m 2, while the density and enthalpy in the shock-compressed gas Pl = 1.4"10 -2 

g/cm 3 and hl = 66 kJ/g andin the JEP P2 = 0.54 g/cm 3 and h2 = 0.58 kJ/g. The Reynolds num- 
ber for the plasma (with an air viscosity wl = 2-10 -3 g/(em, see) [5]) has a value Rel = 8"I0 G, 
while in accordance with the chosen model Re2 = 10 8 for the JEP [with ~2 = 10 -3 g/(cm, see)]. 
The heat-transfer criterion St (Stanton number) for the resulting turbulent boundary layer 
is calculated from the formula [3] St = 0.0288 Re -I/s pr-2/3 The Reynolds number Re and 
Prandtl number Pr were determined from the physical properties of the boundary layer with the 
characteristic temperature 

where T~ and T w are the temperatures of the core of the gas flow and the wall, respectively; 
To is the stagnation temperature: 

To=Tg(i + ?~1 M2). - - T - -  , 

is the adiabatic exponent; M is the Mach number. Given the above assumptions, the heat 
flow to the channel wall from the shock,compressed gas ql = 5-7"I0~ W/em 2 , while the heat 
flow from the detonation products q2 = 106 W/cm 2 �9 The larger value of q2 is due mainly to 
the greater value of density P2. These estimates show the dominant effect of the explosive 
jet of detonation PrOducts on heat exchange with the channel. 

Two mechanisms of removal of material from the channel surface are possible. The first 
ascribes the removal to melting of the surface and continuous entrainment of the melt by the 
gas flow as a result of high shear stresses on the explosion products--metal boundary. The 
second mechanism provides for attainment of the boiling point by the wall surface and in- 
tensive diffusive vapQrization through the laminar sublayer of the flow, with subsequent mix- 
ing of the vaporized atoms in the turbulent core of the flow. 

In this case too we can evaluate the depth of the removed layer from an approximate re- 
lation. The relation follows from the thermal balance on the gas-metal boundary [6]: 

P~ T1,2), - q 2 , / ( v , l , 2  ' . * 

where �9 is the time of action of the JEP gas flow on the wall, equal to 10 -2 sec; c and p are 
the specific heat and density of the wall; LI, e are the heats of vaporization and fusion; 
T~ 2 are the melting and boiling points. Using the value of the heat flow from the JEP q2 = 
I0 ~ W/cm 2 , we find that the depth of the removed layer is l about 10- cm with the first mecha- 
nism and about I0 -e am with the second mechanism. These findings are of the same order of 
magnitude as the experimental data. Thus, material removal may be affected by both mecha- 
nisms. Here we will examine the mechanism of removal by vaporization. 

Intensive vaporization of the wall may alter the structure of the boundary layer of the 
flow and correspondingly reduce heat flow to the wall. This occurs if the gas-kinetic pres- 
sure of the vapor exceeds the pressure in the jet p. The gas-kinetic pressure of the metal 
vapor at the wall ~nkT~ ~ 5"10 ? N/m 2 (n is the density of the saturated vapor), which is one- 
third the pressure in the jet. This finding indicates that vaporization cannot significantly 
alter the structure of the boundary layer. Here, the change in heat flux to the wall as a 
result of the kinetic energy of the vaporized substance is 

3 RT,~ d8 
Aq ~ 2 Vt d t p '  

where d~/dt is the velocity of the vapor--metal phase boundary; R is the universal gas con- 
stant; D and p are the molecular weight and density of the vaporized substance. The quantity 
Aq ~ 10 s W/cm 2 under the given conditions for the steel channel, with &q ~ q2. 

To perform numerical modeling, the thermal problem on the wall of the channel is for- 
mulated as follows (Fig. la). A plasma bunch of the length sl = (y + 1)/g (8 is the degree 
of compression, 1 is the charge length) and an explosive jet of detonation products of the 
length s2 = l(u/V -- 1) [4] (V is the rate of detonation of the explosive) move along a certain 
section of the channel wall. Ignoring the slight instability of the contact boundary between 
the plasma and the combustion products [7] and the slight expansion of the detonation products 
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as a result of the rarefaction wave, we can assume that a flow qi = St pzu(hi + u2/2 -- h w) 
acts on the surface of the wall over the time T2 = s2/u and a flow q2 = St p2u(h2 + u2/2 -- 
hw) (h w is the enthalpy of the wall) acts on the surface over the subsequent period of time 
�9 2 = s2/u. Here, the subscript I pertains to parameters of the plasma, while 2 pertains to 
parameters of the detonation products. Three phase fronts may develop in the surface of the 
steel wall: fronts associated with the a--T structural transformation, fusion, and vaporiza- 
tion. A mathematical model of the resulting multifront Stefan problem and a method of solv- 
ing it were examined in [8]. If the surface of the wall is heated to the boiling point, then 
the following conditions hold due to the entrainment of vaporized metal by the gas flow 

v = Lp 7 i -  - ~ 77. r (~, ~ ( t ) ) - -  r~, 

where L and 6 are the heat of vaporization and the coordinate of the vaporization boundary; 
, 

is the thermal conductivity of the wall; T 2 is the boiling point, calculated from the 
Clausius--Clapeyron relation 

;/( T o r~=r l--n-7--l~ 
I 

(p0 and T~ are the atmospheric pressure and the boiling point at atmospheric pressure). 

Figure Ib shows the dynamics of motion of the phase fronts associated with vaporization 
x = 6(t), function x = ~(t) and the a--u structural transformation x = ~(t) on a section located 
55 cm from the beginning of the channel with the following parameters of the explosive charge: 
detonation rate V = 7.5 km/sec, charge length 7 = 15 cm, inside diameter 1.5 cm. During the 
time of action of the plasma bunch 0 < t ~ Ti (sl = 6"10 -6 sec), two fronts move into the 
depth of the wall: the a--T transformation front and the fusion front. Subsequent action of 
the detonation products (Ti < t ~ Ti + T2, ~2 = 6"10 -6 sec) is accompanied by formation of 
the vaporization.front, with the velocity of the vaporization boundary exceeding the velocity 
of the fusion boundary. This means that the melt formed by the plasma bunch is partially or 
completely vaporized in the detonation products. The subsequent path of the curves (t > Ti + 
T2) reflects the stage of cooling of the heated layer. 

Figure 2a shows the dependence of the quantity of entrained material from the surface on 
the distance along the channel. The resulting values of $ allow us to suggest that removal 
of the material may be significantly influenced by vaporization of the wall during passage of 
the explosive jet of detonation products. 

Metallographic analysis of specimens cut from tubes treated with a gas-explosive dis- 
charge shows [I] that there are zones of cooled melt and heat-affected zones in certain speci- 
mens. The formation of these zones is connected with the action of the expanded detonation 
products in the rarefaction wave. The dependence of the heat flow to the wall on the time 
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in this part of the gasdynamic jet flow can be approximately represented in the form q3 = 
q2(I -- t/T3), where T3 is the time of action of the rarefaction wave. 

Figure 2b compares calctllated depths of fusion (curve 2) and thermal quenching (curve I) 
with values obtained experimentally [I] along a steel tube (with a charge length I = 28 cm). 
The increase in the thickness of these zones toward the end of the channel is due to an in- 
crease in the size of the unloading wave and a corresponding increase in the time of action 
T3. 

The process of heat treatment of the wall may be accompanied by diffusive saturation of 
the melt with components of the explosion products. Such saturation occurs mainly with the 
action of the expanding explosion products (EP). Diffusion of elements from the plasma and 
from the main flow of the EP jet can be ignored in view of the above analysis of the thermal 
effect. The large temperature gradients in the melt, reinforced by the high boiling point 
(6000-8000~ facilitate the process of diffusion due to the appreciable dependence of the 
diffusion coefficient D on temperature. In the Einstein--Stokes approximation, D can be de- 
termined from the formula 

D == kT/6~vr, (I) 

where k is the Boltzmann constant; v is the viscosity of the melt; r is the radius of a dif- 
fusing particle. Ignoring diffusion in the solid phase and assuming a mass-transfer condition 
on the surface in conformity with Newton's law, we have 

- D ~ p / o % =  6 = ~(o~ - %~ ~ ~a, 

where 0i is the concentration of the i-th component of the EP; 0w is the concentration on the 
surface of the wall; ~ is the mass-transfer coefficient; qd is the diffusion current. It can 
be assumed that the diffusion process satisfies the classical transport boundary-value problem 
[9]. If we ignore the effect of the impurity on the thermal regime in the wall, then at the 
phase boundary we can take the condition ~pi/3Xlx=~(t) = 0. 

Analysis of the composition of the final detonation products [10] shows that the domi- 
nant component of the EP is atomic nitrogen. Assuming complete dissociation of N2 molecules 
on the surface, the diffusion current of nitrogen can be evaluated on the basis of the Reynolds 
analogy [2]: qd ~ qp/(h + u2/2). This estimate gives qd ~ 300 g/(cm2"sec) for a diffusion 
current of nitrogen from EP. 

Figure 3a shows characteristic distributions of nitrogen concentration through the depth 
of the melt at different moments of time. Boundary condition (I), determined for a rarefac- 
tion wave in EP, leads to a situation whereby the concentration maximum is reached in the 
depth of the wall rather than on its surface (curves I and 2). The dynamics of the change 
in concentration at different points through the depth of the wall is shown in Fig. 3b. The 
concentration maximum subsequently shifts toward the surface, and the final distribution of 
the impurity in the wall is smoothed out. 

Figure 4 shows the calculated dependence of the mass of nitrogen in the wall on the dis- 
tance along the channel. The mass of nitrogen m at a distance of I m from the beginning of 
the channel is 2.4-10 -5 g/cm 2, while the nitrogen concentration on the surface is 0.4% by wt. 
with a characteristic diffusion-zone depth of 15 ~m. 
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REFLECTION OF A PLANE LONGITUDINAL SHOCK WAVE OF CONSTANT INTENSITY 

FROM A PLANE RIGID BOUNDARY WITH A NONLINEAR ELASTIC MEDIUM 

A. A. Burenin and V. V. Lapygin UDC 539.3 

A consequence of the second law of thermodynamics in gasdynamics is the well-known theo- 
rem of Cemplen on the existence of only compressional shock waves. Ths system of differen- 
tial equations of gasdynamics has the property that they lead to solutions consistent with 
this theorem. With certain additional conditions, a similar situations occurs for quasi- 
longitudinal (bulk) shock waves in an elastic medium. In particular, in the formulation of 
self-modeling problems in the nonlinear dynamical theory of elasticity [1], one can often 
prove a priori that the leading front of bulk deformations propagating in the elastic medium 
is either a shock wave or a centralized wave depending on whether the introduced perturba- 
tions lead to compression or expansion of the medium. Another case is that of quasitrans- 
verse (shear) shock waves. We note that [2] a purely transverse shock wave, leading only 
to shear without a change in volume, can exist in a nonlinear elastic medium only for a par- 
ticular deformed state in front of the surface of discontinuity. This means that a shear 
shock wave will always simultaneously be a compressional wave. It was shown in [2] that in 
this case- the bulk deformations are of second order in comparison with shear deformations 
and for real materials they lead to an expansion of the medium. On the other hand, in [3] 
the self-modeling problem on the pure shear of an elastic half-space was considered, and it 
was shown that a centralizer shear wave also leads to expansion, for the same properties of 
the elastic medium. Therefore, one can obtain two solutions of the same self-modeling prob- 
lem Of the nonlinear dynamical theory of elasticity depending on the formulation of the prob- 
lem. Self-modeling dynamical problems of the nonlinear theory of elasticity were considered 
in [1, 3-5] and shock waves in an elastic medium in [2, 6, 7]. 

In the present paper we formulate and present the numerical results of the self-modeling 
problem of the nonlinear dynamical theory of elasticity for the reflection of a plane longi- 
tudinal shock wave of constant intensity from a plane rigid boundary with an elastic medium. 
It is shown that for angles of incidence of the original shock wave which are less than a 
certain critical value (which depends on the wave intensity) two solutions of the problem are 
possible: a reflected quasitransverse shock wave or a centralized shear wave. For angles of 

incidence exceeding the critical value, the solution exists only for the reflected shock wave. 
The leading front of the bulk de~ormations is caused by the reflection of the shock wave from 
the rigid barrier and is a quasitransverse shock wave. 

I. The system of equations describing the dynamical deformation of an elastic medium 
in a rectangular coordinate system in terms of the Euler variables has the form [8, 9] 
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